THE UNIVERSITY OF CINCINNATI NEUROSCIENCE GRADUATE PROGRAM

Required Curriculum

COURSE DESCRIPTIONS

REQUIRED COURSES

26NS778. Fundamentals of Neuroscience I. This is the first half of a two-quarter course that will serve as an introduction to neuroscience for graduate students in the UC Neuroscience Graduate Program and interested students from other UC graduate programs. Fundamentals of Neuroscience I will provide an overview of our current understanding of molecular and cellular neuroscience.

26NS779. Fundamentals of Neuroscience II. This is the second half of a two-quarter course that will serve as an introduction to neuroscience for graduate students in the UC Neuroscience Graduate Program and interested students from other UC graduate programs. Fundamentals of Neuroscience II is intended to integrate and extend topics covered in Fundamentals of Neuroscience I, and will provide an overview of our current understanding of neuroendocrine and motor systems, reward and addiction, and behavioral and cognitive neuroscience.

26NS840. Survey of Neuroscience Research. Weekly research seminars by faculty to introduce incoming graduate students to research opportunities in neuroscience at the University of Cincinnati. This series of seminars will assist students in identification of laboratories in which they desire to do laboratory rotations and ultimately dissertation research.

26GNTD871. Introduction to Molecular Genetics. Genetic concepts, DNA structure, replication and repair, recombination, transcription, translation, regulation, cloning methods. Fall quarter only.

26GNTD872. Molecular Biology of the Cell I Proteins and Enzymes. Application of classical and molecular techniques to problems of protein structure and function; membrane organization and dynamics; biochemistry of membrane transport processes. Fall quarter only.

26GNTD862. Molecular Biology of the Cell II. This course covers membrane biology and basic cell biology. Emphases include membrane structure and generation of resting and action potentials, cell compartmentalization and organelles, protein trafficking and secretion, cytoskeleton, extracellular matrix, nuclear architecture and chromosome structure. The course integrates morphological, biochemical and biophysical approaches. Winter quarter only.

26NS841. Brain and Behavior I. Principals and concepts of nervous system organization: structural organization, neurophysiology, motor systems, sensory systems, higher functions. Spring quarter.


26NS910. Neuroscience Journal Club. This course will emphasize critical analysis of current issues in neuroscience research. Presentations will be made by students, faculty, and postdoctoral trainees, and group discussion is encouraged.

26NS901. Neuroscience Seminar. Formal presentations of current research in neuroscience will be given by distinguished neuroscientists from outside institutions.

26GNTD730. Ethics in Research. This seminar course prepares the scientific researcher to deal with essential practical ethical issues, such as paper authorship criteria and responsible collection and presentation of data.

26NS843. Systems/Behavioral Neuroscience. This course provides students with an overview and introduction to systems and behavioral neuroscience. Topics covered include neuroendocrine systems; neural basis of motivated behaviors, including aggression, sex and maternal behavior; learning and memory; reward and addiction; cognitive and computational neuroscience; and biological rhythms.

ELECTIVES - NEUROSCIENCE

26GNTD863. Molecular Biology of the Cell III. This course emphasizes regulation of cell cycle and cell proliferation. The course introduces the student to cell growth factors and their receptors and discusses their relationship to oncogenes. There is further emphasis on cellular responses to peptide and steroid hormones and involvement of second messengers such as cyclic nucleotides, calcium and protein kinases. Spring quarter only.

26NS861. Neuroscience III. 4 cr. Hrs. An overview of human psychiatric and neurological disorders, including depression, bipolar disorder, schizophrenia, substance abuse, Parkinson’s disease and other movement disorders, Alzheimer’s disease, stroke, brain tumors, and epilepsy. The course is offered during a four-week concentrated block of time. Permission of course director.
Required Curriculum

26NS830. Neuropharmacology. 2 cr. hrs. This course will cover the neurochemical mechanisms underlying the behavioral effects of psychoactive drugs. Permission of course director.

26NS930. Advanced Topics in Neuroscience. 1-4 cr. hrs. Each quarter, current topics in distinct areas of Neuroscience are studied in depth. These courses will build on and expand coverage of Neuroscience beyond that presented in the graduate core courses. Recent offerings include “Sensory Neurons” and “Receptor neuropharmacology.” Check with the Interdepartmental Program in Neuroscience graduate office for the list of courses for the current academic year.

26NS940. Advanced Study in Neuroscience. 1-12 cr. hrs. Individualized readings or research in a specialized topic in neuroscience. This course will allow students to study topics independently under the direction of faculty who have expertise in that area. Approval of Neuroscience Program Director.

ELECTIVES - OTHER DEPARTMENTS/PROGRAMS

15BIOL550. Ethology. 3 cr. hrs. Abroadly comparative introduction to animal behavior with some emphasis on evolutionary and ecological interpretations of behavioral diversity. Prerequisite: Biology 303 or permission of instructor.

15BIOL675. Data Analysis for Biologists. 4 cr. hrs. An introduction to quantitative methodologies for examining ecological, cellular, and molecular data. Emphasizes understanding of statistics used in biological literature. Prerequisite: permission of instructor.

15BIOL676. Advanced Data Analysis. 3 cr. hrs. A second course in data analysis and statistics for graduate students. The instructor begins with linear models of regression and ANOVA, and works through multivariate, time series and advanced graphical methods. Prerequisite: Biology 675 or permission of instructor.

15BIOL680. Vertebrate Reproduction. 3 cr. hrs. An examination of the reproductive process of several vertebrate models. Emphasis will be placed on the control of reproduction by endocrine and environmental factors. Prerequisite: Biology 571 or permission of instructor.

15BIOL789. Scientific Writing and Ethics. 3 cr. hrs. A practical course in preparation of abstracts, posters, figures, oral presentations, manuscripts, and grant applications in the biological sciences; a discussion of ethical issues involved in the collection and presentation of scientific data. Prerequisite: permission of instructor.

15BIOL840. Sensory Physiology. 3 cr. hrs. Physiological bases of vision, hearing, touch, and smell. Current concepts of transduction, neural pathways, transmitters and research techniques. Prerequisite: Biology 540 or equivalent.

15BIOL850. Behavioral Ecology. 3 cr. hrs. Study of the adaptive value of animal behavior; foraging; territorial behavior; communication; mating systems; social behavior. Prerequisite: Biology 550 or Biology 578, or permission of instructor.

15BIOL880. Structure and Function of Biomembranes. 4 cr. hrs. Current trends in membrane research; biological and ultrastructural aspects; artificial membranes, probes isolation techniques. Prerequisite: permission of instructor.

15PSYC922. Clinical Neuropsychology I. 3 cr. hrs. Discussion of the theoretical and empirical literature on brain-behavior relationships and examination of the clinical features of the major neurobehavioral syndromes, including visuoperceptive, aphasic, amnestic, and apraxic disturbances. Prerequisite: Students who have not been admitted to the PhD program in Clin. Psych. must obtain the consent of the instr., the Dir. of Clin. Training, and the Dir. of Grad. Studies prior to enrolling in this course.

15PSYC923. Clinical Neuropsychology II. 3 cr. hrs. Emphasis is on the etiology and assessment of focal and nonfocal cerebral impairment related to trauma, neoplasm, cerebrovascular disease, degenerative dementias, and toxico-metabolic disorders. Prerequisite: Students who have not been admitted to the PhD program in Clin. Psych. must obtain the consent of the instr., the Dir. of Clin. Training, and the Dir. of Grad. Studies prior to enrolling in this course.

15CDIS732. Neurogenic Language Disorders. Study of Language disorders associated with cerebrovascular accidents and neurologic diseases as well as the language and behavioral manifestations of closed head injury. Assessment and management procedures are covered.

15CDIS810. Dysphagia. This course covers the neurophysiologic bases of swallowing and the assessment and management of swallowing disorders.
15CDIS810. Sensory Systems and Cerebral Dominance. Nature of methods for studying senses; structure and function of the various sense modalities, emphasis on hearing; left-brain, right-brain neurophysiologic differences.

15CDIS715. Neurophysiology of Audition. The neuroanatomy and physiology of the inner ear and higher auditory pathways.


25PBIO851. Biochemical Neuropharmacology. 3 cr. hrs. The study of the characteristics of neurotransmitter systems and drugs that affect those systems. Offered in Autumn Quarter, alternate years, even years.

25PBIO850. Pharmacodynamics. 4 cr. hrs. An introductory course on the general principles of the sites and mechanisms of drug action and factors influencing drug actions.

26DB852. Developmental Biology. Description of mammalian embryology complemented by molecular basis of developmental processes leading to organ formation and functional competence and the developmental basis of clinical malformation.

26PMM721. Methods in Experimental Pathology. Rigorous laboratory course designed to familiarize the aspiring scientist in the biological sciences with contemporary research methods (including molecular biologic techniques) as they are applied to the study of human disease. Prereq.: Perm. of the course director.

26CB825. Principles and Biological Applications of Light Microscopy. Course will focus on the practical, biological applications of all types of light microscopy including phase, DIC, fluorescence, confocal, and video-enhanced microscopy.


26CB841. Microscopic Anatomy. The normal microscopic structure of cells, tissues and organs with emphasis on structural-functional relationships. Perm. of college and course director. College of Medicine graduate students only.

26GNTD880. Cancer Biology. A one quarter course that covers a broad spectrum of issues relating to the genesis and progression of cancer. Some topics that are covered include cell kinetics and cell cycle regulation in normal and cancerous cells, oncogenes and growth factors, tumor suppressors, the genetics of cancer, mutation and environmental exposure, signal transduction and the role of the immune system in cancer.

26ENV787. Introduction to Biostatistics. Descriptive statistics, probability distributions, estimation, types of error, significance level, test of hypotheses, sample size, correlation, linear regression, non-parametric methods. Emphasizes practical-applied aspects.

26MG710. Advanced Molecular Genetics I. Provides a literature-based view with student discussions of major research questions, with emphasis upon gene structure and the regulation of gene expression. Prereq.: 26-950-871 or perm. of instr. Winter quarter only.

26MG711. Advanced Molecular Genetics II. Provides a literature-based view with student discussions of examples of programmed gene expression during differentiation. Topics include patterns of Drosophila and mouse development, muscle differentiation, immune system development and oncogenes. Prereq.: 26-941-710. Spring quarter only.

26MG719. Biochemistry II: Protein Biochemistry. Designed for graduate students who have completed Molecular Biology of the Cell I. Mechanisms of protein folding; macro-molecular assemblies; molecular mechanisms of catalysis; physical methods for analysis of macromolecules; growth factor receptors and signal transduction; fluorescence, and applications to the study of membranes. Prereq.: 26-950-872 or perm. of instr. Winter quarter only.

26MCP851. Special Topics in Neurophysiology. 3 cr. hrs. Principles of sensory and motor organization and higher functions of the brain. Prereq.: Molecular Biol. of the Cell II (26-950-862) or perm. of instr.

26MCP873. Advanced Topics in Electrophysiology. 3 cr. hrs. Membrane potentials and electrical models of nerve muscle and synapse, analysis of ionic theories for bioelectric phenomena.
Required Curriculum

Prereq.: Biophysics II (26-968-991) and perm. of instr.

26MCP985.Neural Network. 3 cr. hrs.
Application of theories of control systems and mathematical modeling to problems in the central nervous system. Prereq.: perm. of instr.

E. Doctoral Candidacy Examination

During the second year in the Program, students will complete the course requirements, begin work on their dissertation research, and prepare for and take the Candidacy Examination. The Doctoral Candidacy Examination, a requirement of the University of Cincinnati, represents one of the most careful evaluations of students’ intellectual development and capability by the University and the Program. This section lists the rules by which the examination will be conducted by the Neuroscience Graduate Program.

Rules
1. The Doctoral Candidacy Examination must be taken prior to the end of Fall quarter of the third year.

2. The Exam consists of: the preparation of a NIH-style research proposal on a topic of your choice, followed by an oral examination. The proposal should be a maximum of 10 single-spaced pages, excluding references, and should follow the format of an NIH predoctoral fellowship application.

3. The subject of the research proposal must be clearly distinct from the area of your thesis research. First, you should consult with your advisor to be sure that your selected topic is appropriately distinct from the focus of your Dissertation project. Second, you should meet with both the Program Director and the Director of Graduate Studies for their approval of the general subject area. Topics that are considered “too close” to the topic of the thesis in either their intellectual or technical content may be rejected by either the Program Director or the Director of Graduate Studies.

4. You should select the members of the Candidacy Exam Committee on the basis of the subject matter of your proposal. You should also select a Committee chair; this individual must be a Neuroscience faculty member who is not your advisor. The full Committee should include the chair, your advisor, and three additional faculty, at least two of whom are members of the Neuroscience program.

5. You will then convene a meeting of the Candidacy Exam committee to present a brief summary of your plans. You should prepare and distribute an outline (two-pages) of your proposal prior to the initial Committee meeting. The purpose of this Committee meeting is to evaluate the scope of the project; the Committee will not advise the candidate on issues of experimental design.

6. When the Committee approves your proposal, you will have four weeks to prepare and submit the final document. The oral examination must be held within two weeks of submitting your final research proposal and your response to the exam question.

7. The document should be prepared independently. You should not solicit any assistance with the design of the proposal or preparation of the written document. However, as you may not be familiar with some of the methods you propose to use, you are permitted to seek guidance from faculty on purely technical matters. To aid you in preparation of the written document, proposals from previous years will be made available to you (see the Program Coordinator).

8. Prior to the committee meeting obtain the Candidacy Exam sign-off form from the Program Coordinator.

9. At the oral examination, you will make a brief presentation (approx. 20-30 min.) of your proposal to the committee. Committee members will then question you on aspects of the written proposal and oral presentation, and may also ask questions about related issues or fundamental concepts in any area of Neuroscience. At the end of the defense you will leave the room to allow the Committee to discuss your performance.

10. The outcome of the exam is determined by a private vote of the Committee. A pass will require the vote of the majority of the Committee. Possible outcomes of the examination include:

   1. Pass without stipulations.

   2. Pass with the stipulation that additional requirements must be completed. For example, you may be required to rewrite the proposal if the English composition is not satisfactory. Academic work to remedy a deficit revealed by the examining process may be required. The Committee may mandate other requirements.
Required Curriculum

3 Fail. A failing performance may be reversed by the completion of additional requirements set by the committee which can include (but are not limited to) complete formulation and defense of a new independent proposal. Lesser requirements may be set as necessary. Requirements for retaking the proposal are governed by University policies.

11. After the vote, you will return to be informed of the decision by the Committee chair. The chair will discuss the strengths and weaknesses of the written documents and your oral defense, as well as any other suggestions or requirements. In addition, copies of a short written report of your performance will be prepared by the Committee chair and distributed to you, your advisor, the Candidacy Exam Committee, and the Neuroscience Program Director.

12. Second examinations for candidacy must not be held until at least one quarter has elapsed, but must be taken within six months after the original exam. Should the student fail to pass the examination on the second attempt, they will be dismissed from the program.

13. Upon successful completion of the Doctoral Candidacy Exam, students will be eligible for admission to Ph.D. candidacy, provided they have passed all required core courses with a "B" or better. If core course requirements remain to be satisfied, Ph.D. candidacy status cannot be granted until their successful completion.

F. Dissertation Research and Dissertation Committee

Sometime during your second or third year, as your Dissertation research begins to take shape, you should form a Dissertation Committee. (You are required to form this Committee within three months after passing your Candidacy Exam). The Dissertation Committee monitors the progress of your dissertation research on a continuing basis and provides valuable advice on technical questions, research directions, or alternative approaches. The Dissertation Committee consists of five members, at least three of whom are members of the Neuroscience Program. The chair of the committee is one's Advisor. If your Advisor is not a member of the Graduate Faculty, the Committee must have at least two Neuroscience faculty who are Graduate Faculty members.

Committee meetings must occur regularly, preferably at least once every six months. Within one week after the meeting, you must submit a summary of the meeting that is signed by both you and your advisor. These summaries should include a description of progress since the last meeting; plans for the next few months; and a projected target date for completion of the dissertation.

G. Submission of the Dissertation

As your research progresses, meetings with your Dissertation Committee will indicate a logical end point for your dissertation work. As you approach this point, you should begin writing your dissertation. The Neuroscience Graduate Program permits two possible formats for the dissertation:

a. Traditional Model:

Introduction - presents the research problem, the background which critically evaluates existing knowledge and specifically identifies gaps that the research has attempted to fill. This section generally concludes with a statement of your hypothesis.

Materials and Methods - complete description of materials and methods employed in carrying out your research.

Results - presentation of the data/findings from the research incorporating necessary tables, illustrations and photographs, and diagrams.

Discussion - discussion of results, conclusions drawn, relevance to existing knowledge, difficulties of interpretation of particular data.

Bibliography - listing of all cited literature references, including all authors, titles, dates, volume and inclusive pages.

Appendix - additional materials including tables or figures, if desired.

b. Combination of Published and Supplementary Material:

This mechanism allows the inclusion of material previously published by the student in the dissertation without substantial rewriting. The bound dissertation consists of reproductions of work published or in press and also any additional literature review, methods, results, and/or discussion deemed necessary by the student's advisor and committee. This second option can be selected by the student with the approval of
the research advisor and a majority of the Dissertation Committee.

Under normal circumstances reproductions of two scientific papers written by the student on which the student is first author and also additional material as deemed necessary will then constitute the dissertation. The papers must represent, in the view of the student’s Dissertation Research Committee, significant contributions to the scientific literature and must appear in peer reviewed journals. Publications which do not meet these criteria include abstracts, brief notes, preliminary communications, book chapters, and review articles. Papers under review for publication may be accepted at the discretion of the Dissertation Committee.

H. Final Defense of the Dissertation

The final defense of your dissertation consists of the presentation of a seminar that is open to all members of the academic community and the public, followed by an oral examination by your Dissertation Committee. After the seminar, the general audience is free to ask questions and make comments. After the audience leaves the room, members of the Dissertation Committee will ask pertinent questions of the candidate. At the conclusion of the defense, the student will withdraw, and the Dissertation Committee votes to accept or reject the dissertation and its defense. Then, you return to the room to receive the decision of the Committee. Because the Dissertation Committee has closely monitored the dissertation research, acceptance of the dissertation at this stage is generally a formality. Upon a favorable decision, the approval form is signed by the committee members and transmitted to the appropriate office of the Graduate Division. At least 4/5 of the voting members of the dissertation committee must approve the dissertation. The defense is usually followed by a reception in honor of the student.

I. Normal Progress In The Program

1. completing at least two lab rotations and then choosing an advisor by the end of the first year;

2. achieving a grade of B or above in all required core courses by the end of the second year and achieving a grade of B or above in any additional courses required by the Initial Advisory Committee or Candidacy Examination Committee.

3. participating in the Neuroscience Journal Club during your first and second years;

4. attending the Neuroscience Seminar during all years;

5. for non-native English speakers, passing the Oral English Proficiency Test before the end of the second year;

6. passing the candidacy examination prior to beginning the 9th quarter or fall quarter of the third year in the program;

7. forming a dissertation committee within 3 months after passing the qualifying exam;

8. completing a total of 135 graduate credit hours for the doctoral degree within the specified time stipulated by the rules of the Graduate School of the University of Cincinnati; and

9. submitting and orally defending a satisfactory doctoral dissertation

J. Procedures for the Evaluation of Student Progress

1. Progress of each student in the program is monitored by the Program Director, Director of Graduate Studies, and, in the case of first year students, the Initial Advisory Committee, on a quarterly basis. We review grades in course work, participation in the Neuroscience Journal Club and Neuroscience Seminar, candidacy exam performance, and research progress. The purpose of these reviews is to help you move quickly and productively through the program.

2. Dissertation Committee meetings must be held at least every six months. A summary of each meeting, signed by both the student and advisor, must be submitted to the Director of Graduate Studies within one week after the meeting. The summary should review the progress since the last Dissertation Committee meeting, outline plans, and project a target date for completion of the dissertation research.
# Required Curriculum

<table>
<thead>
<tr>
<th>PRIVATE YEAR 1</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fundamentals of Neuroscience I (3)</strong></td>
<td>Fundamentals of Neuroscience II (4)</td>
<td>Brain and Behavior I (4)</td>
<td>26NS841 Attend all labs and lectures</td>
<td></td>
</tr>
<tr>
<td>26NS778</td>
<td>26NS779</td>
<td>26NS841</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Biochemistry (3)</strong></td>
<td>Cell Biology (Cell II) (3)</td>
<td>Research rotation (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26GNTD872 (Cell I)</td>
<td>26GNTD873-001</td>
<td>26NS852</td>
<td>Research (do not register)</td>
<td></td>
</tr>
<tr>
<td><strong>Survey of Research (1)</strong></td>
<td>Ethics in Research (1)</td>
<td>Neuroscience Journal Club (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS840</td>
<td>26GNTD735</td>
<td>26NS912</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Neuroscience Journal Club (1)</strong></td>
<td>Neuroscience Journal Club and Ethics Module (1)</td>
<td>Neuroscience Journal Club (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS910</td>
<td>26NS911</td>
<td>26NS912</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Neuroscience Seminar (1)</strong></td>
<td>Neuroscience Seminar (1)</td>
<td>Neuroscience Seminar (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS901</td>
<td>26NS902</td>
<td>26NS903</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Research rotation (9)</strong></td>
<td>Research rotation (8)</td>
<td>Research rotation (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS850</td>
<td>26NS851</td>
<td>26NS852</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core courses are in bold. (Numbers in parentheses are course credits)

<table>
<thead>
<tr>
<th>PRIVACY YEAR II</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Molecular Genetics (3)</strong></td>
<td>Academic Survival Skills (3)</td>
<td>Statistical Methods in Physiology (3)</td>
<td>26NS849</td>
<td></td>
</tr>
<tr>
<td>26GNTD871* (east campus)</td>
<td>26NS777</td>
<td>26MCP849</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Neuroscience Journal Club (1)</strong></td>
<td>Advanced Topics Neuroscience (1)</td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS910</td>
<td>26NS911</td>
<td>26NS912</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Neuroscience Seminar (1)</strong></td>
<td>Neuroscience Journal Club (1)</td>
<td>Neuroscience Journal Club (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS901</td>
<td>26NS902</td>
<td>26NS903</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Research (12)</strong></td>
<td>Research (12)</td>
<td>Research (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26NS850</td>
<td>26NS851</td>
<td>26NS852</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSSIBLE ELECTIVES</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Advanced Topics Neuroscience (1-4)</strong></td>
<td>Advanced Topics Neuroscience (1-4)</td>
<td>Neuroendocrinology of Homeostasis</td>
<td></td>
</tr>
<tr>
<td>26NS930</td>
<td>26NS930</td>
<td>26NS930</td>
<td></td>
</tr>
<tr>
<td><strong>Intro to Biostatistics (4)</strong></td>
<td>Advanced Mol. Gen. I (4)</td>
<td>Brain and Behavior II (4)</td>
<td></td>
</tr>
<tr>
<td>26ENV787</td>
<td>26MG710</td>
<td>26NS861</td>
<td></td>
</tr>
<tr>
<td><strong>Developmental Biology (4)</strong></td>
<td>Advanced Biochem. I: Protein Biochemistry (4)</td>
<td>Biochemical Neuropharmacology (3)</td>
<td></td>
</tr>
<tr>
<td>26DB985</td>
<td>26MG719</td>
<td>25PBC0861</td>
<td></td>
</tr>
<tr>
<td><strong>Microscopic Anatomy (4)</strong></td>
<td></td>
<td>Practical Light Microscopy (2)</td>
<td></td>
</tr>
<tr>
<td>26CB841</td>
<td></td>
<td>26CB825</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Mol. Gen. II (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26MG711</td>
<td></td>
</tr>
</tbody>
</table>